гранулометрического состава почв

УДК: 10.18522/2308-9709-2019-30-6 https://new.jbks.ru/archive/issue-30/article-6

Сравнительный анализ методов определения гранулометрического состава почв

Морозов И. В. $\frac{1}{2}$, Шкуропадская К. В. $\frac{2}{2}$, Пшеничная А. А. $\frac{3}{2}$, Болдырева В. Э. $\frac{4}{2}$

- 1. ФГАОУ ВО «Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского, кафедра почвоведения и оценки земельных ресурсов
 - 2. ЮФУ
 - 3. ЮФУ
- 4. Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет», Академия биологии и биотехнологии им. Д.И. Ивановского

Цель исследования - сравнительный анализ результатов определения гранулометрического состава почв, полученных различными методами: полевым методом шнура, методом пипетки, а также регламентированными международным (ISO 11277:2009) и межгосударственным (ГОСТ 12536-2014) стандартами. Исследования гранулометрического состава чернозема обыкновенного карбонатного показали, что причины несоответствий полученных результатов анализов одних и тех же почвенных образцов с использованием метода пипетки и ареометрического метода по ГОСТ 12536-2014 и ISO 1127762009, связаны исключительно с различными подходами к подготовке почвенных образцов к лабораторным испытаниям и, прежде всего, различным соотношением навески почвы и объема диспергатора.

Введение

Гранулометрический состав, являясь одной из фундаментальных генетических характеристик почвы, определяет спектр исследований в области не только отдельных разделов почвоведения, связанных с изучением физических, химических, физико-химических свойств, процессов и режимов почв, но и учитывается при решении многих инженерных задач: мелиоративных, инженерно-геологических и инженерно-экологических.

Причем, в случае инженерных изысканий гранулометрический анализ почв и грунтов является обязательным. В свою очередь, обязательность выполнения того или иного анализа регламентирована соответствующими методами метрологии и стандартизации.

В случае гранулометрического состава сложилась парадоксальная ситуация: для решения научных задач российский исследователь вправе выбрать любой из имеющихся в почвоведении методов, а при решении инженерных задач только те методы, которые регламентированы межгосударственным стандартом «ГОСТ 12536-2014. Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава» [1].

В настоящее временя в почвоведении отсутствуют стандартные методы, регламентирующие не только процедуру количественного учета фракций элементарных почвенных частиц (ЭПЧ), но весь этап подготовки почвенных образцов к анализу. Многочисленные литературные источники показывают, что результаты исследований, полученные при разных способах количественного учета ЭПЧ и подготовки почвенных образцов к анализу, могут существенно отличаться по содержанию отдельных фракций и даже целых групп фракций в одной и той же почве, что отрицательно сказывается на решении не только научных, но и прикладных задач.

При отсутствии стандартных методов у исследователей может сложиться ложное представление о том, что выходом из создавшейся ситуации является использование методов, регламентированных ГОСТ 12536-2014 [1]. Анализу ошибочности такого подхода и посвящена данная работа.

Цель исследования - сравнительный анализ результатов определения гранулометрического состава почв, полученных различными методами: полевым методом шнура, методом пипетки, а также регламентированными международным (ISO 11277:2009) и межгосударственным (ГОСТ 12536-2014) стандартами [1, 2].

Объект исследования

Чернозем обыкновенный карбонатный среднемощный слабогумусированный тяжелосуглинистый крупнопылевато-иловатый на желто-бурых лессовидных тяжелых суглинках (Ботанический сад, Южный федеральный университет, г. Ростов-на-Дону, Россия). Изучение гранулометрического анализа проводили по следующим почвенным горизонтам: А $_{\text{пах}}$ (0—14 см); $_{\text{п/пах}}$ (14—45 см); $_{\text{1}}$ (45—60 см); $_{\text{2}}$ (60—80); BC/C (80—137 см).

Методы исследования

Для определения гранулометрического состава чернозема обыкновенного карбонатного нами использованы международный (ISO 11277:2009) и межгосударственный (ГОСТ 12536-2014) стандарты, которые используют аналитические испытательные лаборатории в Российской Федерации. Для исследования использовали ареометрический метод [1, 2].

В качестве метода сравнения использован метод пипетки с пирофосфатным способом подготовки почвенных образцов к анализу, принятый в почвоведении, а также грубо-эмпирический (полевой метод шнура) для предварительной оценки гранулометрического состава исследуемых почв [3].

Гранулометрический состав ареометрическим методом проводят путем измерения плотности суспензии ареометром в процессе ее отстаивания. Для определения гранулометрического состава чернозема обыкновенного в обоих стандартах был один и тот же набор средств измерения и посуды.

При этом этап подготовки почвенных образцов согласно международному и межгосударственному стандартам существенно различаются (таблица 1).

Таблица - 1 Особенности подготовки почвенных образцов к гранулометрическому анализу по ГОСТ 12536-2014 и ISO 11277:2009

Основные характеристики		Подготовка почвенных образцов
	ГОСТ 12536-2014	ISO 11277:2009
Навеска средней пробы < 1 мм, в г	30 г	20 г
павеска средней проові < 1 мім, в г	30 1	для суглинков и глин
Объем суспензии, в мл	200 мл	См. Примечание*
Диспергатор, в см ³	1 <i>см³</i> 25 %-ного раствора аммиака	25 мл буферного раствора гексаметафосфата натрия
Кипячение, в час	1 час	_
пипичение, в час	(суглинки, глины <i>)</i>	_
Объем стабилизатора коагуляции, в см 3	5 см ³ пирофосфата натрия (Na ₄ H ₂ O ₇)	-
Диаметр сита при переносе суспензии в цилиндр, в мм**	0,1 мм	0,063 мм
Объем суспензии для анализа в цилиндре, в л	1 л	1 л

*Примечание: Согласно международному стандарту ISO 11277:2009, требуется удаление легко- и труднорастворимых солей, а также органического вещества. Для разрушения органических остатков пробу оставляют на сутки, затем добавляют 30 мл 30% перекиси водорода. В нашем случае почва вскипает по всему профилю, из-за чего происходила бурная реакция, которую контролируют добавлением октан-2-олом. После 24 часов взвесь кипятили до исключения барботажа. Затем суспензию промывали водой до нужного нам значения электропроводности, доводя объем до 180-200 мл.

**Для каждого метода применяли различные классификационные шкалы ЭПЧ, согласно указанным в соответствующих стандартах (таблица 2), для метода пипетки использована классификация механических элементов Н. А. Качинского [3].

Таблица 2 - Набор сит с диаметром ячеек, применяемых при подготовке почвенных образцов к гранулометрическому анализу по ГОСТ 12536-2014 и ISO 11277:2009

ГОСТ 12536-2014	
Размер ячеен	<, мм
1,0	
0,5	
0,25	
0,1	

Согласно требованиям рассматриваемых стандартов, перед началом анализа в отобранных при естественной влажности почвенных образцах определены следующие показатели: плотность твердой фазы (или плотность частиц грунта), содержание органического углерода и гигроскопическая влажность (таблица 3).

Таблица 3 - Показатели гигроскопической влажности, плотности ЭПЧ и содержания органического углерода в черноземе обыкновенном карбонатном (Ботсад ЮФУ, г. Ростов-на-Дону, Россия)

Горизонт и глубина взятия образца, см	Гигроскопическая влажность, в %	Плотность твердой фазы, г/см ³			
A _П (0-14)	4,3	2,40			
Α _{π/παχ} (14-45)	4,3	2,60			
B ₁ (45-60)	4,2	2,65			
B ₂ (60-80)	4,1	2,65			
BC/C (80-137)	3,5	2,70			

BC/C

0,50

13,82

31,87

Результаты исследований и их обсуждение

По результатам полевого определения установлено, что исследуемые черноземные почвы относятся к классу тяжелых суглинков. Согласно классификации почв по гранулометрическому составу (Качинский, 1965), содержание физической глины в этих почвах лежит в интервале 45—60 %. При этом, определить содержание преобладающих фракций ЭПЧ и дать полное классификационное название почвы не представляется возможным. Однако, это обстоятельство не делает метод «плохим». Данный метод полевой диагностики достаточно надежно и быстро (при наличии соответствующего опыта) позволяет разделить исследуемые объекты на большие группы. Например, разделить близкие по составу и свойствам классы почв и грунтов: легкие и средние суглинки, средние и тяжелые суглинки. При этом, классы, резко различающиеся по содержанию и соотношению частиц (например, пески и глины), часто определяют методом визуальной диагностики.

Особенно актуальным способ полевой диагностики представляется, если учесть, что данный метод дает очень высокую сходимость с другими методами: методом пипетки или методом определения гранулометрического состава по пластичности почв и грунтов.

Результаты лабораторного определения гранулометрического состава почв, полученные методом пипетки и ареометрическим методом по ГОСТ 12536-2014 и ISO 11277:2009 представлены в таблицах 4-7.

Горизонт и глубина			*Класс по						
взятия образца, см	1-0,25	0,25-0,05	0,05-0,01	0,01-0,005	0,005-0,001	< 0,001	> 0,01	< 0,01	гранулометрическому составу
A _Π	0,73	12,92	33,79	6,67	17,10	28,78	47,44	52,56	Суглинок тяжелый
А _{п/пах}	0,52	14,44	31,68	7,50	21,68	24,18	46,64	53,36	Суглинок тяжелый
B ₁	0,80	15,85	25,42	10,42	18,75	28,75	42,08	57,92	Суглинок тяжелый
B ₂	0,58	15,36	22,47	9,57	17,48	34,54	38,42	61,58	Глина легкая

Таблица 4 - Результаты определения гранулометрического состава почв методом пипетки [3]

18,21

29,80

46,19

53,81

Суглинок тяжелый

5,79

Результаты определения гранулометрического состава с использованием метода пипетки (таблица 4), показали, что исследуемые черноземы обыкновенные карбонатные характеризуются относительно высоким содержанием физической глины (< 0,01 мм) в гор. А пах - 52,6 %, что позволяет отнести данную почву к разновидности иловатокрупнопылеватых тяжелых суглинков, согласно Классификации почв и почвообразующих пород по механическому составу Н. А. Качинского [3]. Характерными признаками исследуемых почв по гранулометрическому составу являются следующие:

1) в гор. B_2 , где отмечается некоторое накопление илистой фракции 34,2 %, присутствует слабовыраженное оглинивание в нижней части профиля. Отсутствует дифференциация фракций средней и мелкой пыли, в связи с чем, содержание физической глины увеличивается в гор. B_2 до 61 %. Содержание средней пыли незначительно изменяется от 6,7 % в гор. $A_{\text{пах}}$ до 5,8 % в гор.ВС/С. Содержание же мелкой пыли имеет максимум в горизонте A_1 , составляя 21,7 % и минимум в горизонте BC/С, составляя 18,2 %.

^{*}Примечание: Классификационное наименование приведено по классификации Н. А. Качинского: Чернозем обыкновенный карбонатный среднемощный тяжелосуглинистый на желто-буром тяжелом лессовидном суглинке

гранулометрического состава почв

- 2) высокое содержание фракции крупной пыли (0,05-0,01 мм) в диапазоне от 22,5 25,4 % в гор. В $_1$ и В $_2$ до 31,9 % 33,8 % в гор. ВС/С, что позволяет диагностировать почвообразующую породу как лессовидную;
- 3) невысокое содержание фракции мелкого песка от 13,8 % в гор. ВС/С до 12 % 14 % в верхних гор. А $_{\rm nax}$ и $^{\rm A}_{\rm 1}$ соответственно;
- 4) незначительное количество фракции крупного и среднего песка (1-0,25 мм), содержание которой составляет около 0,8 %.

Таким образом, полученные результаты определения гранулометрического состава чернозема обыкновенного карбонатного с использованием метода пипетки (пирофосфатная подготовка) не противоречат данным, представленным в научной литературе, и являются характерными для исследуемой разновидности черноземных почв.

Результаты исследования гранулометрического состава ареометрическим методом, представленные в таблице 5, показали, что исследуемый чернозем обыкновенный карбонатный характеризуется содержанием физической глины (< 0.01 мм) от 31,7 (в гор. A $_{\text{пах}}$) до 50,2 % в (в гор. BC/C), что противоречит данным, полученным методом пипетки (табл. 4).

Таблица 5 - Результаты определения гранулометрического состава почв ареометрическим методом по ГОСТ 12536-2014

Горизонт и глубина			*Класс по							
взятия образца, см	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05-0,01	0,01-0,002	< 0,002	> 0,01		гранулометрическому составу
A _n	0,2	1,5	3,8	5,7	57,1	27,1	4,6	68,3	31,7	Суглинок средний
A _{n/nax}	0,1	0,9	2,5	6,7	46,0	14,4	29,3	56,3	43,7	Суглинок средний
B ₁	0,0	0,8	2,4	5,4	51,7	20,7	19,0	60,3	39,7	Суглинок средний
B ₂	0,1	0,8	1,9	10,2	49,2	7,4	30,3	62,2	37,8	Суглинок средний
BC/C	0,0	0,7	2,2	9,2	37,6	17,7	32,5	49,8	50,2	Суглинок тяжелый

^{*}Примечание: Классификационное наименование приведено по классификации Н. А. Качинского: Чернозем обыкновенный карбонатный среднемощный среднесуглинистый на желто-буром тяжелом лессовидном суглинке

Весьма равномерной в распределении частиц по профилю является фракция ила (< 0,002 мм), содержание которой достигает 4,6 % в верхней части профиля с тенденцией к значительному увеличению в гор. ВС/С до 32,5 %, в следствие этого в горизонте гор.В $_2$ 61,6 % присутствует слабо выраженное оглинивание.

Содержание частиц средней пыли постепенно увеличивается вниз по профилю, начиная от 5,6 % в гор. А $_{\text{пах}}$ и заканчивая 9,2 % в гор.ВС/С.

Характерной особенностью исследуемого чернозема обыкновенного карбонатного является высокое содержание фракции крупной пыли (0,05—0,01 мм), содержание которой колеблется от 49,2 % - 51,7 % в гор. В $_1$ и В $_2$ до 37,6 % в гор. ВС/С.

Содержание фракции крупного и среднего песка (1-0.25 мм), составляет около 1.0 %. Для исследуемой почвы характерно не высокое содержание фракции мелкого песка от 2.2 % в гор. ВС/С и 3.8 % в гор. А $_{\text{пах}}$ соответственно. Данные результаты по физическому песку (> 0.01 мм) и физической глине (< 0.01 мм), незначительно отличаются от

результатов, приведенных в таблице 4.

Таким образом, результаты определения гранулометрического состава чернозема обыкновенного карбонатного, полученные ареометрическим методом по ГОСТ 12536–2014, позволяют отнести исследуемую почву к разновидности крупнопылеватых средних суглинков, согласно Классификации почв и почвообразующих пород по механическому составу Н. А. Качинского, т.к. содержание физической глины (< 0.01 мм) в гор. А $_{\text{пах}}$ составляет 31,7 %.

Следует отметить наличие принципиальных различий между результатами изучения гранулометрического состава, полученных методом пипетки и ареометрическим методом по ГОСТ 12536-2014. Так, использование стандартного метода приводит к повышению выхода мелкой пыли, содержание которой увеличивается в два раза, превышая характерные значения. Что касается фракций ЭПЧ, то здесь уже присутствуют отличия, связанные с различными способами подготовки почвы.

Все методы, используемые для изучения состава и свойств почв и грунтов, в т.ч. и ГОСТ 12536-2014, состоят из двух этапов:

- этап № 1 подготовка почвенного образца к анализу;
- этап № 2 количественный учет ЭПЧ, т.е. определение фракционного состава механических элементов.

Мы предполагаем, что данный метод не может учесть фракционный состав полностью, поскольку имеется существенный изъян на этапе подготовки образцов к анализу: недостаточное для пептизации мезо- и микроагрегатов количеством диспергатора. Если в методе пипетки на 10 г почвы используется 20 мл пирофосфата, то согласно ГОСТ 12536-2014, на 30 г почвы добавляют всего 6 мл диспергатора (1 cm^3 25 %-ного раствора аммиака и 5 cm^3 пирофосфата натрия ($Na_AH_2O_7$).

Для проверки гипотезы нами поставлен эксперимент с различным количеством диспергатора – пирофосфата натрия: 5 мл, 30 мл, 60 мл. Максимальное количество диспергатора соответствует соотношению навески почвы и пирофосфата натрия, принятого в методе Н.А. Качинского в модификации Долгова-Мичмановой. Полученные результаты представлены в таблице 6.

Таблица - 6 Результаты определения гранулометрического состава почв ареометрическим методом ГОСТ 12536 - 2014, выполненные с различным количеством диспергатора

	Количество				Соде	ержание	фракций в	з ЭПЧ, в %			
Горизонт почвы	1	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05- 0,01	0,01- 0,002	< 0,002	> 0,01	< 0,01	*Класс по гранулометрическому составу
	5	0,0	0,9	2,2	13,1	53,8	18,1	11,9	70,0	30,0	Суглинок средний
А _{пах}	30	0,0	0,9	2,5	13,8	39,7	11,3	31,8	56,9	43,1	Суглинок средний
	60	0,1	0,9	2,7	11,5	35,6	16,4	32,8	50,8	49,2	Суглинок тяжелый
	5	0,0	0,5	1,4	15,4	38,1	25,1	19,6	55,3	44,7	Суглинок средний
BC/C	30	0,0	0,4	1,0	11,8	34,9	19,6	32,2	48,2	51,8	Суглинок тяжелый
	60	0,1	0,5	1,4	10,4	34,9	19,6	33,2	47,2	52,8	Суглинок тяжелый

^{*}Примечание: Классификационное наименование приведено по классификации Н. А. Качинского: Чернозем обыкновенный карбонатный среднемощный среднесуглинистый на желто-буром среднем лессовидном суглинке

Сравнительныи анализ методов определения гранулометрического состава почв

Результаты показали, что исследуемый нами чернозем обыкновенный карбонатный характеризуется содержанием физической глины (< 0,01 мм) в гор. А в 5 мл – 30,0 %, в 30 мл – 43,9 %, в 60 мл – 49,2 %, в гор.С в 5 мл – 44,7 %, в 30 мл – 51,8 %, в 60 мл – 52,8 %, что значительно отличается от результатов стандартной методики (метода пипетки).

Содержание ила увеличивается вместе с большим количеством пирофосфата натрия и составляет наибольшее количество в гор. $A_{\text{пах}}$ в 60 мл – 32,8 %, в гор. ВС/С в 60 мл – 33,2 %.

Преобладающими фракциями является крупно-пылеватая (0,05–0,01 мм), которая уменьшается по увеличению количества диспергатора в гор. $A_{\text{пах}}$ 5 мл – 53,8 %, 60 мл – 35,6 % мл.

Для исследуемой почвы характерно невысокое содержание фракции мелкого песка в вариантах с любым количеством добавляемого пирофосфата натрия, составляет примерно 2,0 % в гор. А $_{\rm nax}$ 1,0 % в гор. ВС/С. Содержание фракции крупного и среднего песка (1-0,25 мм), составляет примерно 1,0 %.

Результаты определения гранулометрического состава при увеличении объема диспергатора, т.е. изменения соотношения «навеска ÷ диспергатор», показали, что исследуемые черноземы обыкновенные характеризуются не как суглинки средние, а как суглинки тяжелые. При добавлении 60 мл диспергатора нами получен фракционный состав ЭПЧ аналогичный полученному методом пипетки.

Таким образом, при использовании навески почвы 30 г, согласно ГОСТ 12536-2014, и добавлении 60 мл диспергатора ареометрический метод количественного учета ЭПЧ дает практически сопоставимые результаты с методом пипетки.

В связи с тем, что в практике производства инженерных изысканий (инженерно-геологических, инженерноэкологических, инженерно-мелиоративных и др.) использование ареометрического метода является нормативным требованием, для получения результатов, сопоставимых с данными, полученными методом пипетки, требуется внести изменения в методику в части увеличения объема диспергатора в зависимости от навески почвы.

Таким образом, в данном исследовании анализ показал, что при разном количестве диспергатора по ГОСТ 12536-2014, результаты будут расходится с основной методикой, потому что согласно основной методологии количество диспергатора определяется емкостью катионного обмена, содержанием гумуса и предполагаемым количеством илистой фракции. В итоге, если мы в методе пипетки берем на 10 г почвы – 20 мл, то на 30 г необходимо брать 60 мл. Полученные результаты показали, что при 5 мл получился средний суглинок, при 30 мл получился тяжелый суглинок, а при 60 мл получилась легкая глина. При взятии 60 мл результаты получились практически сопоставимы с методом пипетки, следовательно, проблема лежит не в способе учета фракций (метод пипетки и ареометр), а в подготовке почвенных образцов к анализу.

Таким образом, ГОСТ 12536-2014 не учитывает количество диспергатора, что приводит к искажению результатов, поэтому в данном виде данный способ определения гранулометрического состава в почвоведение не может быть использован, без внесения соответствующих поправок. Мы предлагаем, внести изменения в ГОСТ 12536-2014 в части учета объема диспергатора в зависимости от навески почвы.

Результаты определения гранулометрического состава чернозема обыкновенного карбонатного по методу ISO 11277:2009, представленные в таблице 7, показали, что исследуемая почва характеризуется содержанием ила (clay) 10,0 % в гор. А пах с незначительными колебаниями по профилю – 11 % в гор. А пилах и 7 % в гор. ВС.

Таблица 7 - Результаты определения гранулометрического состава почв ареометрическим методом по ISO 11277:2009

Горизонт и глубина			*Класс по								
взятия образца, см	2- 0,06	0,06- 0,05	0,05- 0,03	0,03- 0,02	0,02- 0,01	0,01- 0,005	0,005- 0,002	0,002- 0,001	< 0,001	< 0,01	гранулометрическому составу
Α _Π	39,0	9,0	6,0	6,0	12,0	17,0	1,0	9,0	1,0	28,0	Суглинок легкий
A _{п/пах}	47,0	0,0	8,0	8,0	9,0	9,0	8,0	10,0	1,0	28,0	Суглинок легкий
B ₁	39,0	6,0	7,0	9,0	11,0	11,0	8,0	4,0	5,0	28,0	Суглинок легкий

гранулометрического состава почв

B ₂	43,0	4,0	8,0	8,0	6,0	19,0	2,0	9,0	1,0	31,0	Суглинок средний
BC/C	54,0	5,0	4,0	1,0	7,0	15,0	7,0	4,0	3,0	29,0	Суглинок легкий

^{*}Примечание: 1 Согласно классификации почв Министерства сельского хозяйства США (USDA), исследуемая почва характеризуется как Silt Loam (пылеватый суглинок).

В целом, исследуемые почвы характеризуются преобладанием пылеватых фракций (silt 0,06–0,002 мм), содержание которых довольно высокое. Максимальное количество данной группы фракций отмечается в гор. А $_{\rm nax}$ и В $_{\rm 1}$ – 51 % и 52 % соответственно. Минимальное количество пылеватых фракций приходится на гор. А $_{\rm n/nax}$ и ВС – 42 % и 39 % соответственно.

Содержание песчаных фракций (sand 2-0,06 мм) колеблется в диапазоне от 39 % в гор. А $_{\rm пах}$ и ${\rm B_1}$ до 54 % в гор. ВС.

Согласно Классификации почв по гранулометрическому составу Министерства сельского хозяйства США (USDA), исследуемый чернозем обыкновенный карбонатный характеризуется как *Silt Loam* или суглинок пылеватый [4].

Для сравнительного анализа с Классификацией почв и почвообразующих пород Н. А. Качинского [3] нами произведен пересчет групп фракций с учетом российской классификации механических элементов (ЭПЧ). Полученные результаты представлены в таблице 7.

Сравнительный анализ показал, что на основании пересчета результатов анализа, выполненного по ISO 11277:2009, исследуемая почва, согласно отечественной классификации почв по гранулометрическому составу, характеризуется как суглинок средний. При этом отмечается весьма существенное увеличение «выхода» песчаных фракций, даже с учетом того, что в международной классификации механических элементов верхняя граница песка составляет 2 мм.

Выводы

- 1. По результатам полевого определения установлено, что исследуемые черноземные почвы относятся к классу суглинков тяжелых, согласно Классификации почв и почвообразующих пород по механическому составу Н. А. Качинского. Метод «шнура» дает очень высокую сходимость с методом пипетки.
- 2. Результаты определения гранулометрического состава с использованием метода пипетки, показали, что исследуемые черноземы обыкновенные карбонатные характеризуются относительно высоким содержанием физической глины (< 0,01 мм) в гор. А _{пах} 52,6 %, что позволяет отнести данную почву к разновидности иловато-крупнопылеватых тяжелых суглинков, согласно Классификации почв и почвообразующих пород по механическому составу Н. А. Качинского.
- 3. Результаты определения гранулометрического состава чернозема обыкновенного карбонатного, показали, что исследуемые черноземы обыкновенные карбонатные характеризуются невысоким содержанием физической глины (< 0,01 мм) в гор. А 31,7 %, что позволяет отнести данную почву к разновидности суглинков средних крупнопылеватых, согласно Классификации почв и почвообразующих пород по механическому составу Н. А. Качинского.
- 4. Результаты определения гранулометрического состава чернозема обыкновенного карбонатного по методу ISO 11277:2009, показали, что согласно Классификации почв по гранулометрическому составу Министерства сельского хозяйства США (USDA), исследуемый чернозем обыкновенный карбонатный характеризуется как Silt Loam (суглинок пылеватый). Сравнительный анализ с Классификацией почв и почвообразующих пород Н. А. Качинского показал, что на основании пересчета результатов анализа, выполненного по ISO 11277:2009, исследуемая почва, согласно отечественной классификации почв по гранулометрическому составу, характеризуется как суглинок средний.
- 5. В связи с тем, что в практике производства инженерных изысканий (инженерно-геологических, инженерноэкологических, инженерно-мелиоративных и др.) использование ареометрического метода является нормативным требованием, для получения результатов, сопоставимых с данными, полученными методом пипетки, требуется внести изменения в методику в части увеличения объема диспергатора в количестве сопоставимом с методом пипетки.

² Согласно классификации Н. А. Качинского, наименование почвы – Чернозем обыкновенный карбонатный среднемощный легкосуглинистый на желто-буром легком лессовидном суглинке

Сравнительный анализ методов определения гранулометрического состава почв

Список литературы

- 1. ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава.
- 2. ISO 11277:2009 Soil quality Determination of particle size distribution in mineral soil material Method by sieving and sedimentation.
- 3. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
- 4. Glossary of Soil Science Terms of SSSA, 1987. Available HTTP: http://www.soils.org/sssagloss/

Spisok literatury

- 1. GOST 12536-2014 Grunty. Metody laboratornogo opredeleniya granulometricheskogo (zernovogo) i mikroagregatnogo sostava.
- 2. ISO 11277:2009 Soil quality Determination of particle size distribution in mineral soil material Method by sieving and sedimentation.
- 3. Vadyunina A.F., Korchagina Z.A. Metody issledovaniya fizicheskih svojstv pochv. M.: Agropromizdat, 1986. 416 s.
- 4. Glossary of Soil Science Terms of SSSA, 1987. Available HTTP: http://www.soils.org/sssagloss/